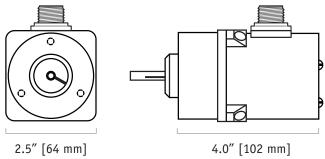
RT8CN

0-45° to 0-200 Turns • CANbus J1939

Industrial Grade Rotational Position Sensor Absolute Rotary Position up to 200 turns Aluminum or Stainless Steel Enclosure Options IP68 / NEMA 6

GENERAL

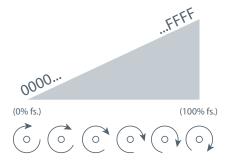
Full Stroke Range Options	0-0.125 to 0-200 turns
Electrial Interface	CANbus SAE J1939
Protocol	Proprietary B
Accuracy	see ordering information
Repeatability	$\pm0.05\%$ full stroke
Resolution	essentially infinite
Enclosure Material Options	powder-painted aluminum or stainless steel
Sensor	plastic-hybrid precision potentiometer
Potentiometer Cycle Life	see ordering information
Shaft Loading	up to 10 lbs. radial and 5 lbs. axial
Starting Torque (25°C)	2.0 in-oz., max.
Weight, Aluminum (Stainles	S Steel) Enclosure 3 lbs. (6 lbs.) max.


ELECTRICAL

Input Voltage	see ordering information
Input Voltage	7 - 18 VDC
Input Current	60 mA max.
Address Setting (Node ID)	063 set via DIP Switches
Baud Rate	125K, 250K or 500K set via DIP Switches
Update Rate	10 ms. (20 ms. available-contact factory)
Thermal Effects, Span	0.01% f.s./°F, max.

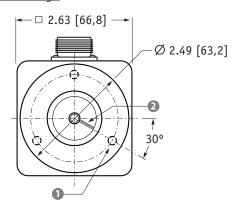
ENVIRONMENTAL

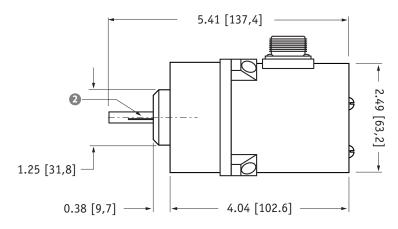
Enclosure	NEMA 4/4X/6, IP 67/68
Operating Temperature	-40° to 200°F (-40° to 90°C)
Vibration	up to 10 g to 2000 Hz maximum



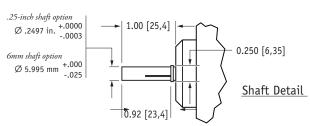
Our model RT8CN communicates rotational position feedback to your PLC via the CANbus SAE J1939 interface. The heart of this sensor is a precision plastic-hybrid position potentiometer which provides a "absolute" position and does not ever have to be reset to a "home" position after a power loss or planned shutdown.

This innovative sensor is designed to meet tough NEMA-4 and IP67 environmental standards and is available in fullstroke measurement ranges of 1/8 to 200 turns.


Output Signal:

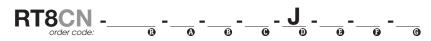


Outline Drawing:



mounting holes: for .25 in. shaft option, mounting holes are threaded #10-32 x 0.375 deep 120° apart on a 2.00 inch dia. BC

for 6mm shaft option, mounting holes are threaded M6 x 9 mm deep 120° apart on a 50,8 mm dia. BC


reference mark: full counter-clockwise position - align mark on shaft to mark on face for start of measurement range

DIMENSIONS ARE IN INCHES [MM] tolerances are ± 0.02 in. $[\pm 0.5 \text{ mm}]$ unless otherwise noted

Ordering Information:

Model Number:

Sample Model Number:

RT8CN - 100 - AL - 25 - FL - J - 500 - 32 - SC5 100 turns

R range:

ange:
enclosure:
shaft:
mounting style:
interface:
baud rate:
node ID:
electrical connection: .25-in diameter CANhus SAF 31939

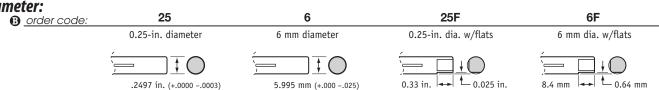
500 k bits/sec.

5-meter cordset with straight plug

powder-painted aluminum

Full Stroke Ranae:

® <u>order code:</u>	R125		R25		R50		1		2		3		5		10		20
clockwise shaft rotations, min:	0.125	:	0.25	:	0.50	:	1	:	2	:	3	:	5	:	10	:	20
accuracy (% of f.s.):	1.25%		1.25%	:	0.5%	:	0.5%	:	0.5%	:	0.2%		0.2%		0.15%		0.15%
potentiometer cycle life*:	2.5 x 10 ⁶	:	2.5×10^6	:	2.5 x 10 ⁶	:	2.5×10^{6}	:	2.5×10^6	:	5 x 10 ⁵	:	5 x 10 ⁵		2.5×10^{5}	:	2.5 x 10 ⁵

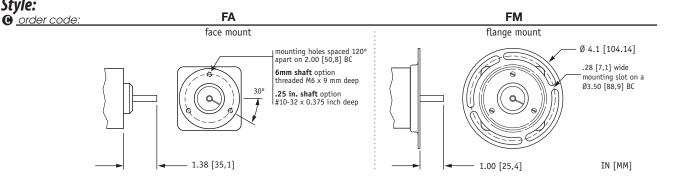

ℚ <u>order code:</u>	30	40	50	80	100	120	140	180	200
clockwise shaft rotations, min:	30	40	50	80	100	120	140	180	200
accuracy (% of f.s.):	0.15%	0.15%	0.15%	0.15%	0.15%	0.15%	0.15%	0.15%	0.15%
potentiometer cycle life*:	2.5 x 10 ⁵	2.5×10^5	2.5 x 10 ⁵						

*–number of times the sensor shaft can be cycled back and forth from beginning to end and back to the beginning before any measurable signal degradation may occur.

Enclosure Material:

AL SS A order code powder-painted aluminum 303 stainless steel

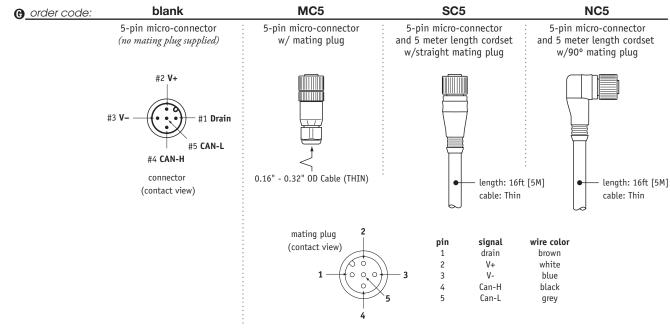
Shaft Diameter:



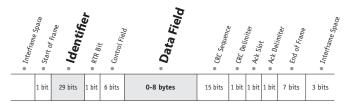
tel: 800.423.5483 • +1.818.701.2750 • fax: +1.818.701.2799

Ordering Information (cont.):

Mounting Style:


Baud Rate:

125 250 500 **B** order code: 125 kbaud 250 kbaud 500 kbaud


Node ID:

0 62 63 **B** order code: select address (0 - 63 Decimal)

Electrical Connection:

I/O Format and Settings

repetition = 8 msec

Identifier

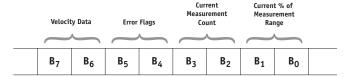
ier	Message Priority Future Use J1939 Refere Use Proprietary													Not	Used		N	Node ID**											
Example –	1	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	1	1	1	1
Identifier Bit No. –	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Hex Value –			()			F	•			ı					5	•			3			3	3			ı	F	

*Sensor field data can be factory set to customer specific value. **Customer defined, set via Dips 1-6. Bit values shown for example only, see Address Setting below.

Data Field

 $\mathbf{B_0}$ = LSB current % of measurement range byte

 $\mathbf{B_1} = \mathsf{MSB}$ current % of measurement range byte


B₂ = LSB current measurement count byte

B3 = MSB current measurement count byte

B₄ = error flag **B**₅ = error flag

B₆ = LSB velocity data byte

B₇ = MSB velocity data byte

Current Measurement Count

The Current Measurement Count (CMC) is the output data that indicates the present position of the measuring cable. The CMC is a 16-bit value that occupies bytes B_2 and B_3 of the data field. B_2 is the LSB (least significant byte) and B_3 is the MSB (most significant byte).

The CMC starts at 0x0000 with the shaft in the full counter-clockwise position (at reference mark) and continues upward to the end of the stroke range stopping at 0xFFFF. This holds true for all ranges.

Converting CMC to Degrees

If required, the CMC can easily be converted a rotary measurement expressed in degrees instead of simply counts.

This is accomplished by first dividing the CMC by 65,535 (total counts over the range) and then multiplying that value by the FSR:

Example:

If the full stroke range is **1 turn (360 degrees)** and the current position is **0x0FF2** (4082 Decimal) then,

$$\left(\frac{4082}{65,535}\right)$$
 X 360 degrees = 22.4 degrees

B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀

Current % of Measurement Range

The Current % of Measurement Range is a 2-byte value that expresses the current linear position as a percentage of the entire full stroke range. Resolution is .1 % of the full stroke measurement range.

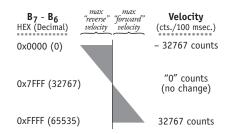
This value starts at **0x0000** at the beginning of the stroke and ends at **0x03E8**.

Example:

Hex	Decimal	Percent
0000	0000	0.0%
0001	0001	0.1%
0002	0002	0.2%
•••	•••	
03E8	1000	100.0%

Error Flags

0x55 (yellow LED on controller board) indicates that the sensor has begun to travel beyond the calibrated range of the internal position potentiometer.


OxAA (red LED on controller board) indicates that the sensor has moved well beyond the calibrated range of the internal position potentiometer.

If either error flag occurs within the full stroke range of the sensor, the unit should be returned to the factory for repair and recalibration.

B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀

Velocity

Data in bytes $\mathbf{B_7} - \mathbf{B_6}$ is the change and direction of the **CMC** (current measurement count) over a 100 msec time period. This data can then be used to calculate velocity and direction in a post processing operation.

Velocity Calculation

$$\left(\frac{\text{count change} - 32767}{.1 \text{ sec. time period}}\right) X \left(\frac{\text{full stroke range}}{65,535}\right)$$

Sample Calculations

Clockwise Shaft Rotation (positive direction):

 $B_7 - B_6 = 0x89C6$ (43462 Dec.), full stroke = 1 Turn

$$\left(\frac{35270 - 32767}{.1 \text{ sec}}\right) \ X \left(\frac{1 \text{ Turn}}{65,535}\right) = .38 \text{ turns/ sec.}$$

Counter-Clockwise Shaft Rotation (negative direction): B₇-B₆ = 0x61A8 (25000 Dec.), full stroke = 1 Turn

$$\left(\frac{25000 - 32767}{.1 \text{ sec}}\right) \times \left(\frac{1 \text{ Turn}}{65,535}\right) = -1.2 \text{ turns/ sec}$$

tel: 800.423.5483 • +1.818.701.2750 • fax: +1.818.701.2799

Setting the Address (Node ID) and Baud Rate

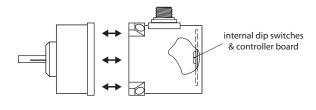
Address Setting (Node ID)

The Address Setting (Node ID) is set via 6 switches located on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

The DIP switch settings are binary starting with switch number $1 (= 2^0)$ and ending with switch number $6 = 2^5$.

Baud Rate

The transmission baud rate may be either factory preset at the time of order or set manually at the time of installation.


The baud rate can be set using switches 7 & 8 on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

CANBus Controller Board

DIP-1 (2 ⁰)	DIP-2 (2 ¹)	DIP-3 (2 ²)	DIP-4 (2 ³)	DIP-5 (2 ⁴)	DIP-6 (2 ⁵)	address (decimal)
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	1	0	0	0	0	2
•••						•••
1	1	1	1	1	1	63

DIP-7	DIP-8	baud rate										
0	0	125k										
1	0	250k										
0	1	500k										
1	1	125k										
	1 1 1 125K											

to gain access to the controller board, remove four Allen-Head Screws and separate case halves